Unconventional ferroelectricity in moiré heterostructures

  • 1.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 5.

    Suárez Morell, E., Correa, J., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    ADS  Article  CAS  Google Scholar 

  • 6.

    Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article  CAS  Google Scholar 

  • 7.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); correction 581, E3 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Liu, X. et al. Spin-polarized correlated insulator and superconductor in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    READ  FTSE drops 8 Chinese groups from indices after Trump order
  • 17.

    Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020); correction 583, 215–220 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    CAS  Article  Google Scholar 

  • 19.

    Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Nandkishore, R. & Levitov, L. Dynamical screening and excitonic instability in bilayer graphene. Phys. Rev. Lett. 104, 156803 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 23.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Fu, L. Parity-breaking phases of spin–orbit-coupled metals with gyrotropic, ferroelectric, and multipolar orders. Phys. Rev. Lett. 115, 026401 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 25.

    Fernandes, R. M. & Venderbos, J. W. Nematicity with a twist: rotational symmetry breaking in a moiré superlattice. Sci. Adv. 6, eaba8834 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Kozii, V. & Fu, L. Odd-parity superconductivity in the vicinity of inversion symmetry breaking in spin–orbit-coupled systems. Phys. Rev. Lett. 115, 207002 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 27.

    Mishra, A. & Lee, S. Topological multiferroic phases in the extended Kane–Mele–Hubbard model in the Hofstadter regime. Phys. Rev. B 98, 235124 (2018).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Preprint at https://arxiv.org/abs/2004.04148 (2020).

  • 29.

    Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Choi, Y. et al. Imaging electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019); correction 15, 1205 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    READ  AMBER Alert Update: 1-Year-Old K’marion Hebron Located Safely After Double Homicide In Riverdale - CBS Chicago

    ADS  CAS  Article  Google Scholar 

  • 32.

    McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 33.

    Li, J., Martin, I., Büttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nat. Phys. 7, 38–42 (2011).

    CAS  Article  Google Scholar 

  • 34.

    Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027–1031 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Ju, L. et al. Tunable excitons in bilayer graphene. Science 358, 907–910 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

    CAS  Article  Google Scholar 

  • 39.

    Hunt, B. et al. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene. Nat. Commun. 8, 948 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Weitz, R. T., Allen, M., Feldman, B., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 41.

    Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl Acad. Sci. USA 109, 10802–10805 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 076602 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. A family of finite-temperature electronic phase transitions in graphene multilayers. Science 362, 324–328 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 44.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 45.

    Zhang, Y., Yuan, N. F. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Preprint at https://arxiv.org/abs/1910.14061 (2019).

  • 46.

    Katayama, Y., Tsui, D., Manoharan, H., Parihar, S. & Shayegan, M. Charge transfer at double-layer to single-layer transition in double-quantum-well systems. Phys. Rev. B 52, 14817–14824 (1995).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    READ  The 5 Most Essential Fitness Tips For Women Who Have No Time

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Young, A. F. & Levitov, L. S. Capacitance of graphene bilayer as a probe of layer-specific properties. Phys. Rev. B 84, 085441 (2011).

    ADS  Article  CAS  Google Scholar 

  • 49.

    Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS  Article  Google Scholar 

  • 51.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Ponomarenko, L. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Finney, N. R. et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  CAS  Google Scholar 

  • 56.

    Craciun, M. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 4, 383–388 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Jhang, S. H. et al. Stacking-order dependent transport properties of trilayer graphene. Phys. Rev. B 84, 161408 (2011).

    ADS  Article  CAS  Google Scholar 

  • 58.

    Wang, H., Wu, Y., Cong, C., Shang, J. & Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 4, 7221–7228 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    McGilly, L. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Leave a Reply

    %d bloggers like this: