Trending

The scales of human mobility

  • 1.

    Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    ADS  PubMed  Google Scholar 

  • 3.

    Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).

    CAS  Google Scholar 

  • 4.

    Paasi, A. Place and region: looking through the prism of scale. Prog. Hum. Geogr. 28, 536–546 (2004).

    Google Scholar 

  • 5.

    Marston, S. A. The social construction of scale. Prog. Hum. Geogr. 24, 219–242 (2000).

    Google Scholar 

  • 6.

    Cresswell, T. On the Move: Mobility in the Modern Western World (Taylor & Francis, 2006).

  • 7.

    Kaluza, P., Kölzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Kraemer, M. U. et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020).

    ADS  CAS  Google Scholar 

  • 9.

    Song, X., Zhang, Q., Sekimoto, Y. & Shibasaki, R. Prediction of human emergency behavior and their mobility following large-scale disaster. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 5–14 (ACM, 2014).

  • 10.

    Becker, F. & Axhausen, K. W. Literature review on surveys investigating the acceptance of automated vehicles. Transportation 44, 1293–1306 (2017).

    Google Scholar 

  • 11.

    Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  • 12.

    Larsen, J. & Urry, J. Mobilities, Networks, Geographies (Routledge, 2016).

  • 13.

    Hirtle, S. C. & Jonides, J. Evidence of hierarchies in cognitive maps. Mem. Cognit. 13, 208–217 (1985).

    CAS  Google Scholar 

  • 14.

    Von Thünen, J. H. Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie Vol. 13 (G Fischer, 1910).

  • 15.

    Christaller, W. Die zentralen Orte in Süddeutschland: eine ökonomisch-geographische Untersuchung über die Gesetzmässigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen (Wissenschaftliche Buchgesellschaft, 1980).

  • 16.

    Berry, B. J. L. Geography of Market Centers and Retail Distribution (Prentice Hall, 1967).

  • 17.

    Alonso, W. et al. Location and Land Use. Toward a General Theory of Land Rent (Harvard Univ. Press, 1964).

  • 18.

    Cadwallader, M. Migration and Residential Mobility: Macro and Micro Approaches (Univ. Wisconsin Press, 1992).

  • 19.

    Thiemann, C., Theis, F., Grady, D., Brune, R. & Brockmann, D. The structure of borders in a small world. PLoS ONE 5, e15422 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Marchetti, C. Anthropological invariants in travel behavior. Technol. Forecast. Soc. Change 47, 75–88 (1994).

    Google Scholar 

  • 21.

    Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e37027 (2012); correction 7, https://doi.org/10.1371/annotation/ca85bf7a-7922-47d5-8bfb-bcdf25af8c72 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Alessandretti, L., Sapiezynski, P., Lehmann, S. & Baronchelli, A. Multi-scale spatio-temporal analysis of human mobility. PLoS ONE 12, e0171686 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Newman, M. E. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    ADS  Google Scholar 

  • 24.

    Liang, X., Zhao, J., Dong, L. & Xu, K. Unraveling the origin of exponential law in intra-urban human mobility. Sci. Rep. 3, 2983 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).

    Google Scholar 

  • 26.

    Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Gheorghiu, S. & Coppens, M.-O. Heterogeneity explains features of “anomalous” thermodynamics and statistics. Proc. Natl Acad. Sci. USA 101, 15852–15856 (2004).

    ADS  CAS  Google Scholar 

  • 28.

    Amini, A., Kung, K., Kang, C., Sobolevsky, S. & Ratti, C. The impact of social segregation on human mobility in developing and industrialized regions. EPJ Data Sci. 3, 6 (2014).

    Google Scholar 

  • 29.

    Fotheringham, A. S. A new set of spatial-interaction models: the theory of competing destinations. Environ. Plan. A 15, 15–36 (1983).

    Google Scholar 

  • 30.

    Saraçli, S., Doğan, N. & Doğan, İ. Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequal. Appl. 2013, 203 (2013).

    MATH  Google Scholar 

  • 31.

    Barbosa, H., de Lima-Neto, F. B., Evsukoff, A. & Menezes, R. The effect of recency to human mobility. EPJ Data Sci. 4, 21 (2015).

    Google Scholar 

  • 32.

    Gaddum, J. H. Lognormal distributions. Nature 156, 463–466 (1945).

    ADS  MathSciNet  MATH  Google Scholar 

  • 33.

    Romeo, M., Da Costa, V. & Bardou, F. Broad distribution effects in sums of lognormal random variables. Eur. Phys. J. B 32, 513–525 (2003).

    ADS  CAS  Google Scholar 

  • 34.

    Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  • 35.

    Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327, 1018–1021 (2010).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • 36.

    Gauvin, L. et al. Gender gaps in urban mobility. Humanit. Soc. Sci. Commun. 7, 11 (2020).

    Google Scholar 

  • 37.

    Breheny, M. The compact city and transport energy consumption. Trans. Inst. Br. Geogr. 20, 81–101 (1995).

    Google Scholar 

  • 38.

    Carr, L. J., Dunsiger, S. I. & Marcus, B. H. Walk Score™ as a global estimate of neighborhood walkability. Am. J. Prev. Med. 39, 460–463 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Gaye, A. et al. Measuring Key Disparities in Human Development: The Gender Inequality Index Human Development Research Paper 46 (UNDP, 2010).

  • 40.

    Velaga, N. R., Beecroft, M., Nelson, J. D., Corsar, D. & Edwards, P. Transport poverty meets the digital divide: accessibility and connectivity in rural communities. J. Transp. Geogr. 21, 102–112 (2012).

    Google Scholar 

  • 41.

    Litman, T. A. Economic value of walkability. Transp. Res. Rec. 1828, 3–11 (2003).

    Google Scholar 

  • 42.

    Baronchelli, A. & Radicchi, F. Lévy flights in human behavior and cognition. Chaos Solitons Fractals 56, 101–105 (2013).

    ADS  Google Scholar 

  • 43.

    Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).

    ADS  Google Scholar 

  • 44.

    Zhao, K., Musolesi, M., Hui, P., Rao, W. & Tarkoma, S. Explaining the power-law distribution of human mobility through transportation modality decomposition. Sci. Rep. 5, 9136 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Pappalardo, L. et al. Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Szell, M., Sinatra, R., Petri, G., Thurner, S. & Latora, V. Understanding mobility in a social petri dish. Sci. Rep. 2, 457 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Jiang, S. et al. The TimeGeo modeling framework for urban mobility without travel surveys. Proc. Natl Acad. Sci. USA 113, E5370–E5378 (2016); correction 113, E7137 (2016).

  • 48.

    Pumain, D. in Hierarchy in Natural and Social Sciences (ed. Pumain, D.) 169–222 (Springer, 2006).

  • 49.

    Batty, M. in Hierarchy in Natural and Social Sciences (ed. Pumain, D.) 143–168 (Springer, 2006).

  • 50.

    Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 150691 (2016).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • 51.

    Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Aslak, U. & Alessandretti, L. Infostop: scalable stop-location detection in multi-user mobility data. Preprint at https://arxiv.org/abs/2003.14370 (2020).

  • 53.

    Pesaresi, M. et al. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014 (Publications Office of the European Union, 2016).

  • 54.

    Train, K. E. Discrete Choice Methods with Simulation (Cambridge Univ. Press, 2009).

  • 55.

    Zahavi, Y. & Ryan, J. The stability of travel components over time. Traffic Eng. Control 750, 19–26 (1978).

    Google Scholar 

  • 56.

    Miller, H. J. Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94, 284–289 (2004).

    Google Scholar 

  • 57.

    Kraemer, M. U. G. et al. Mapping global variation in human mobility. Nat. Hum. Behav. 4, 800–810 (2020).

    Google Scholar 

  • 58.

    Steele, J. E. et al. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 14, 20160690 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Lu, X. et al. Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Climatic Change 138, 505–519 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Lu, X., Bengtsson, L. & Holme, P. Predictability of population displacement after the 2010 Haiti earthquake. Proc. Natl Acad. Sci. USA 109, 11576–11581 (2012).

    ADS  CAS  Google Scholar 

  • 61.

    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    ADS  CAS  Google Scholar 

  • 62.

    Althoff, T. et al. Large-scale physical activity data reveal worldwide activity inequality. Nature 547, 336–339 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Everitt, B. S., Landau, S., Leese, M. & Stahl, D. Hierarchical clustering. Cluster Anal. 5, 71–110 (2011).

    Google Scholar 

  • 64.

    Sekara, V., Stopczynski, A. & Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA 113, 9977–9982 (2016).

    CAS  Google Scholar 

  • Leave a Reply