The baryon density of the Universe from an improved rate of deuterium burning

  • 1.

    Cyburt, R. H., Fields, B. D., Olive, K. A. & Yeh, T.-H. Big Bang nucleosynthesis: present status. Rev. Mod. Phys. 88, 015004 (2016).

    ADS  Article  Google Scholar 

  • 2.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Article  Google Scholar 

  • 3.

    Cooke, R., Pettini, M. & Steidel, C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018).

    ADS  Article  Google Scholar 

  • 4.

    Pitrou, C., Coc, A., Uzan, J. & Vangioni, E. Precision Big Bang nucleosynthesis with improved helium-4 predictions. Phys. Rep. 754, 1–66 (2018).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 5.

    Coc, A. et al. New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. Phys. Rev. D 92, 123526 (2015).

    ADS  Article  Google Scholar 

  • 6.

    Di Valentino, E. et al. Probing nuclear rates with Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).

    ADS  Article  Google Scholar 

  • 7.

    Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  • 8.

    Broggini, C., Bemmerer, D., Caciolli, A. & Trezzi, D. LUNA: status and prospects. Prog. Part. Nucl. Phys. 98, 55–84 (2018).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Cavanna, F. & Prati, P. Direct measurement of nuclear cross-section of astrophysical interest: results and perspectives. Int. J. Mod. Phys. A 33, 1843010–1843042 (2018).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Mossa, V. et al. Setup commissioning for an improved measurement of the D(p,γ)3He cross section at Big Bang nucleosynthesis energies. Eur. Phys. J. A 56, 144 (2020).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Formicola, A. et al. The LUNA II 400kV accelerator. Nucl. Instrum. Methods Phys. Res. A 507, 609–616 (2003).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Fields, B. D., Olive, K. A., Yeh, T.-H. & Young, C. Big-Bang nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  • 13.

    Casella, C. et al. First measurement of the d(p,γ)3He cross section down to the solar Gamow peak. Nucl. Phys. A 706, 203–216 (2002).

    ADS  Article  Google Scholar 

  • 14.

    Ma, L. et al. Measurements of 1H(d→,γ)3He and 2H(p→,γ)3He at very low energies. Phys. Rev. C 55, 588–596 (1997).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Griffiths, G., Larson, E. & Robertson, L. The capture of protons by deuterons. Can. J. Phys. 40, 402–411 (1962).

    ADS  Article  Google Scholar 

  • 16.

    Schmid, G. et al. The 2H(p,γ)3He and 1H(d,γ)3He reactions below 80 keV. Phys. Rev. C 56, 2565–2581 (1997).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Tišma, I. et al. Experimental cross section and angular distribution of the 2H(p,γ)3He reaction at Big-Bang nucleosynthesis energies. Eur. Phys. J. A 55, 137 (2019).

    ADS  Article  Google Scholar 

  • 18.

    Marcucci, L., Mangano, G., Kievsky, A. & Viviani, M. Implication of the proton-deuteron radiative capture for Big Bang nucleosynthesis. Phys. Rev. Lett. 116, 102501 (2016).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Adelberger, E. et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–245 (2011).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Schmid, G. et al. Effects of non-nucleonic degrees of freedom in the D(\(\overrightarrow{{p}}\),γ)3He and the p(\(\overrightarrow{{d}}\),γ)3He reactions Phys. Rev. Lett. 76, 3088–3091 (1996).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Iliadis, C., Anderson, K. S., Coc, A., Timmes, F. X. & Starrfield, S. Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016).

    ADS  Article  Google Scholar 

  • 22.

    Consiglio, R. et al. PArthENoPE reloaded. Comput. Phys. Commun. 233, 237–242 (2018).

    ADS  CAS  Article  Google Scholar 

  • 23.

    De Salas, P. & Pastor, S. Relic neutrino decoupling with flavour oscillations revisited. J. Cosmol. Astropart. Phys. 07, 051 (2016).

    Article  Google Scholar 

  • 24.

    Mangano, G. et al. Relic neutrino decoupling including flavour oscillations. Nucl. Phys. B 729, 221–234 (2005).

    ADS  Article  Google Scholar 

  • 25.

    Aver, E., Olive, K. A., & Skillman, E. D. The effects of He I λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 07, 011 (2015).

    ADS  Article  Google Scholar 

  • 26.

    Peimbert, A., Peimbert, M. & Luridiana, V. The primordial helium abundance and the number of neutrino families. Rev. Mex. Astron. Astrofis. 52, 419–424 (2016).

    ADS  CAS  Google Scholar 

  • 27.

    Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of the primordial helium abundance based on NGC 346, an H ii region of the Small Magellanic Cloud. Astrophys. J. 876, 98 (2019).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Izotov, Y. I., Thuan, T. X. & Guseva, N. G. The primordial deuterium abundance of the most metal-poor damped Lyα system. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Griffiths, G., Lal, M. & Scarfe, C. The reaction D(p,γ)3He below 50 keV. Can. J. Phys. 41, 724–736 (1963).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Warren, J. B., Erdman, K. L., Robertson, L. P., Axen, D. A. & Macdonald, J. R. Photodisintegration of 3He near the threshold. Phys. Rev. 132, 1691–1692 (1963).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Geller, K., Muirhead, E. & Cohen, L. The 2H(p,γ)3He reaction at the breakup threshold. Nucl. Phys. A 96, 397–400 (1967).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Ferraro, F. et al. A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p,γ)23Na resonance. Eur. Phys. J. A 54, 44 (2018).

    ADS  Article  Google Scholar 

  • 33.

    Rolfs, C. & Rodney, W. Cauldrons in the Cosmos (Univ. Chicago Press, 1988).

  • 34.

    Serpico, P. D. et al. Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields. J. Cosmol. Astropart. Phys. 2004, 010 (2004).

    Article  Google Scholar 

  • 35.

    Nollett, K. M. & Burles, S. Estimating reaction rates and uncertainties for primordial nucleosynthesis. Phys. Rev. D 61, 123505 (2000).

    ADS  Article  Google Scholar 

  • 36.

    Tumino, A. et al. New determination of the 2H(d,p)3H and 2H(d,n)3He reaction rates at astrophysical energies. Astrophys. J. 785, 96 (2014).

    ADS  Article  Google Scholar 

  • 37.

    Pisanti, O. et al. PArthENoPE: public algorithm evaluating the nucleosynthesis of primordial elements. Comput. Phys. Commun. 178, 956–971 (2008).

    ADS  CAS  Article  Google Scholar 

  • Leave a Reply