Tension heterogeneity directs form and fate to pattern the myocardial wall

  • 1.

    Staudt, D. & Stainier, D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 46, 397–418 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Liu, J. et al. A dual role for ErbB2 signaling in cardiac trabeculation. Development 137, 3867–3875 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Staudt, D. W. et al. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development 141, 585–593 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Maître, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).

    PubMed  Article  ADS  CAS  Google Scholar 

  • 5.

    Maître, J. L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348 (2016).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 6.

    Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Samarage, C. R. et al. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34, 435–447 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Cherian, A. V., Fukuda, R., Augustine, S. M., Maischein, H. M. & Stainier, D. Y. N-cadherin relocalization during cardiac trabeculation. Proc. Natl Acad. Sci. USA 113, 7569–7574 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Jiménez-Amilburu, V. & Stainier, D. Y. R. The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish. Development 146, dev171207 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 10.

    Tinevez, J. Y. et al. Role of cortical tension in bleb growth. Proc. Natl Acad. Sci. USA 106, 18581–18586 (2009).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 11.

    Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 13.

    Eisenhoffer, G. T. & Rosenblatt, J. Bringing balance by force: live cell extrusion controls epithelial cell numbers. Trends Cell Biol. 23, 185–192 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 15.

    Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 16.

    Levayer, R., Dupont, C. & Moreno, E. Tissue crowding induces caspase-dependent competition for space. Curr. Biol. 26, 670–677 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Han, Y. et al. Vitamin D stimulates cardiomyocyte proliferation and controls organ size and regeneration in zebrafish. Dev. Cell 48, 853–863 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 19.

    Uribe, V. et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 145, dev164194 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 20.

    Chugh, P. et al. Actin cortex architecture regulates cell surface tension. Nat. Cell Biol. 19, 689–697 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208 (2018).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 22.

    Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31, 106–110 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Rasouli, S. J. & Stainier, D. Y. R. Regulation of cardiomyocyte behavior in zebrafish trabeculation by Neuregulin 2a signaling. Nat. Commun. 8, 15281 (2017).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 24.

    Jiménez-Amilburu, V. et al. In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep. 17, 2687–2699 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 25.

    Peshkovsky, C., Totong, R. & Yelon, D. Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev. Dyn. 240, 446–456 (2011).

    PubMed  Article  Google Scholar 

  • 26.

    Westcot, S. E. et al. Protein-trap insertional mutagenesis uncovers new genes involved in zebrafish skin development, including a Neuregulin 2a-based ErbB signaling pathway required during median fin fold morphogenesis. PLoS One 10, e0130688 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Auman, H. J. et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5, e53 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Han, P. et al. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature 534, 700–704 (2016).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 29.

    Ninov, N., Borius, M. & Stainier, D. Y. Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139, 1557–1567 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Shaya, O. et al. Cell–cell contact area affects Notch signaling and Notch-dependent patterning. Dev. Cell 40, 505–511 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Bray, S. J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Shaya, O. & Sprinzak, D. From Notch signaling to fine-grained patterning: modeling meets experiments. Curr. Opin. Genet. Dev. 21, 732–739 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    del Monte-Nieto, G. et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557, 439–445 (2018).

    PubMed  Article  ADS  CAS  Google Scholar 

  • 34.

    Beach, J. R., Licate, L. S., Crish, J. F. & Egelhoff, T. T. Analysis of the role of Ser1/Ser2/Thr9 phosphorylation on myosin II assembly and function in live cells. BMC Cell Biol. 12, 52 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Subauste, M. C. et al. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 275, 9725–9733 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Clark, B. S. et al. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development 139, 1599–1610 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Lin, Y. F., Swinburne, I. & Yelon, D. Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Dev. Biol. 362, 242–253 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Mickoleit, M. et al. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods 11, 919–922 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    D’Amico, L., Scott, I. C., Jungblut, B. & Stainier, D. Y. A mutation in zebrafish hmgcr1b reveals a role for isoprenoids in vertebrate heart-tube formation. Curr. Biol. 17, 252–259 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 41.

    Reischauer, S., Arnaout, R., Ramadass, R. & Stainier, D. Y. R. Actin binding GFP allows 4D in vivo imaging of myofilament dynamics in the zebrafish heart and the identification of Erbb2 signaling as a remodeling factor of myofibril architecture. Circ. Res. 115, 845–856 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Fukuda, R. et al. Proteolysis regulates cardiomyocyte maturation and tissue integration. Nat.Commun. 8, 14495 (2017).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 43.

    Guerra, A. et al. Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish. eLife 7, e32833 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Revenu, C. et al. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. Development 141, 1282–1291 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Lyons, D. A. et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr. Biol. 15, 513–524 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Asakawa, K. & Kawakami, K. The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods 49, 275–281 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Berdougo, E., Coleman, H., Lee, D. H., Stainier, D. Y. & Yelon, D. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 130, 6121–6129 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 224, 213–232 (2006).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 50.

    Bornhorst, D. et al. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nat. Commun. 10, 4113 (2019).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 51.

    Priya, R. & Gomez, G. A. Measurement of junctional protein dynamics using fluorescence recovery after photobleaching (FRAP). Bio Protoc. 3, e937 (2013).

    Article  Google Scholar 

  • 52.

    Liang, X., Michael, M. & Gomez, G. A. Measurement of mechanical tension at cell–cell junctions using two-photon laser ablation. Bio Protoc. 6, e2068 (2016).

    PubMed  PubMed Central  Article  Google Scholar