Trending

Structural basis for the final steps of human 40S ribosome maturation

  • 1.

    Woolford, J. L. Jr & Baserga, S. J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Bohnsack, K. E. & Bohnsack, M. T. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Ameismeier, M., Cheng, J., Berninghausen, O. & Beckmann, R. Visualizing late states of human 40S ribosomal subunit maturation. Nature 558, 249–253 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Cerezo, E. et al. Maturation of pre-40S particles in yeast and humans. Wiley Interdiscip. Rev. RNA 10, e1516 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 6.

    Strunk, B. S., Novak, M. N., Young, C. L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Lebaron, S. et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19, 744–753 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Turowski, T. W. et al. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res. 42, 12189–12199 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Widmann, B. et al. The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits. Mol. Biol. Cell 23, 22–35 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Angermayr, M., Roidl, A. & Bandlow, W. Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol. Microbiol. 44, 309–324 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Ferreira-Cerca, S., Kiburu, I., Thomson, E., LaRonde, N. & Hurt, E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 42, 8635–8647 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Laronde-LeBlanc, N., Guszczynski, T., Copeland, T. & Wlodawer, A. Structure and activity of the atypical serine kinase Rio1. FEBS J. 272, 3698–3713 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Meyer, B. et al. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. 44, 4304–4316 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Babaian, A. et al. Loss of m1acp3Ψ ribosomal RNA modification is a major feature of cancer. Cell Rep. 31, 107611 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Hector, R. D. et al. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res. 42, 12138–12154 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Heuer, A. et al. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. eLife 6, e30189 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Scaiola, A. et al. Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J. 37, e98499 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    O’Donohue, M. F., Choesmel, V., Faubladier, M., Fichant, G. & Gleizes, P. E. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J. Cell Biol. 190, 853–866 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Montellese, C. et al. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. eLife 9, e54435 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Badertscher, L. et al. Genome-wide RNAi screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879–2891 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Farley-Barnes, K. I. et al. Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep. 22, 1923–1934 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Yu, J. & Marintchev, A. Comparative sequence and structure analysis of eIF1A and eIF1AD. BMC Struct. Biol. 18, 11 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Bertomeu, T. et al. A high-resolution genome-wide CRISPR/Cas9 viability screen reveals structural features and contextual diversity of the human cell-essential proteome. Mol. Cell. Biol. 38, e00302-17 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Acker, M. G., Shin, B. S., Dever, T. E. & Lorsch, J. R. Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J. Biol. Chem. 281, 8469–8475 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Pertschy, B. et al. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J. Biol. Chem. 284, 35079–35091 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Sloan, K. E., Knox, A. A., Wells, G. R., Schneider, C. & Watkins, N. J. Interactions and activities of factors involved in the late stages of human 18S rRNA maturation. RNA Biol. 16, 196–210 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Lamanna, A. C. & Karbstein, K. Nob1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain. Proc. Natl Acad. Sci. USA 106, 14259–14264 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Espinar-Marchena, F. J., Babiano, R. & Cruz, J. Placeholder factors in ribosome biogenesis: please, pave my way. Microb. Cell 4, 144–168 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Wyler, E. et al. Tandem affinity purification combined with inducible shRNA expression as a tool to study the maturation of macromolecular assemblies. RNA 17, 189–200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  Article  Google Scholar 

  • 36.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed  Article  CAS  Google Scholar 

  • 37.

    Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Taoka, M. et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 46, 9289–9298 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Google Scholar 

  • 41.

    Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Zemp, I. et al. CK1δ and CK1ε are components of human 40S subunit precursors required for cytoplasmic 40S maturation. J. Cell Sci. 127, 1242–1253 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Leave a Reply