Spatial connectivity matches direction selectivity in visual cortex

  • 1.

    Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Iacaruso, M. F., Gasler, I. T. & Hofer, S. B. Synaptic organization of visual space in primary visual cortex. Nature 547, 449–452 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Wilson, D. E., Whitney, D. E., Scholl, B. & Fitzpatrick, D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat. Neurosci. 19, 1003–1009 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Wilson, D. E., Scholl, B. & Fitzpatrick, D. Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature 560, 97–101 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Packer, A. M. & Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31, 13260–13271 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965).

    CAS  Article  Google Scholar 

  • 14.

    Fried, S. I., Münch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Vaney, D. I., Sivyer, B. & Taylor, W. R. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 13, 194–208 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kim, J. S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Alonso, J. M. & Martinez, L. M. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1, 395–403 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Priebe, N. J. Mechanisms of orientation selectivity in the primary visual cortex. Annu. Rev. Vis. Sci. 2, 85–107 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Liu, B. H. et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542–554 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Znamenskiy, P. et al. Functional selectivity and specific connectivity of inhibitory neurons in primary visual cortex. Preprint at https://doi.org/10.1101/294835 (2018).

  • 23.

    Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Atallah, B. V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Wilson, N. R., Runyan, C. A., Wang, F. L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Ma, W. P. et al. Visual representations by cortical somatostatin inhibitory neurons–selective but with weak and delayed responses. J. Neurosci. 30, 14371–14379 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Monier, C., Chavane, F., Baudot, P., Graham, L. J. & Frégnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Livingstone, M. S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Xu, X. et al. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity. J. Physiol. (Lond.) 594, 1891–1910 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Adesnik, H. & Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464, 1155–1160 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003).

    CAS  Article  Google Scholar 

  • 32.

    Weiler, S. et al. Relationship between input connectivity, morphology and orientation tuning of layer 2/3 pyramidal cells in mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2020.06.03.127191 (2020).

  • 33.

    Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Ringach, D. L. et al. Spatial clustering of tuning in mouse primary visual cortex. Nat. Commun. 7, 12270 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Marques, T., Nguyen, J., Fioreze, G. & Petreanu, L. The functional organization of cortical feedback inputs to primary visual cortex. Nat. Neurosci. 21, 757–764 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Bonin, V., Histed, M. H., Yurgenson, S. & Reid, R. C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and areal organization of mouse visual cortex. J. Neurosci. 34, 12587–12600 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100 (2013).

    ADS  Article  CAS  Google Scholar 

  • 39.

    Liu, B. H. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13, 89–96 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Li, Y. T., Liu, B. H., Chou, X. L., Zhang, L. I. & Tao, H. W. Strengthening of direction selectivity by broadly tuned and spatiotemporally slightly offset inhibition in mouse visual cortex. Cereb. Cortex 25, 2466–2477 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Li, Y. T., Ibrahim, L. A., Liu, B. H., Zhang, L. I. & Tao, H. W. Linear transformation of thalamocortical input by intracortical excitation. Nat. Neurosci. 16, 1324–1330 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Hillier, D. et al. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat. Neurosci. 20, 960–968 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Cruz-Martín, A. et al. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358–361 (2014).

  • 45.

    Lien, A. D. & Scanziani, M. Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558, 80–86 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Thiele, A., Distler, C., Korbmacher, H. & Hoffmann, K. P. Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc. Natl Acad. Sci. USA 101, 9810–9815 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

  • 48.

    Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Marshel, J. H., Mori, T., Nielsen, K. J. & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67, 562–574 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Rancz, E. A. et al. Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat. Neurosci. 14, 527–532 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat. Protocols 9, 2515–2538 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protocols 4, 862–869 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Kim, E. J., Jacobs, M. W., Ito-Cole, T. & Callaway, E. M. Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep. 15, 692–699 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Brondi, M., Sato, S. S., Rossi, L. F., Ferrara, S. & Ratto, G. M. Finding a needle in a haystack: identification of EGFP tagged neurons during calcium imaging by means of two-photon spectral separation. Front. Mol. Neurosci. 5, 96 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16 (2007).

    Google Scholar 

  • 64.

    Burgess, C. P. et al. High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell Rep. 20, 2513–2524 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Pachitariu, M. et al. Suite2p beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2016).

  • 66.

    Dipoppa, M. et al. Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98, 602–615 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article  Google Scholar