Sources of particulate-matter air pollution and its oxidative potential in Europe

  • 1.

    Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2. 5. Environ. Sci. Technol. 49, 8057–8066 (2015).

    ADS  CAS  Google Scholar 

  • 2.

    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Valavanidis, A., Fiotakis, K. & Vlachogianni, T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C 26, 339–362 (2008).

    CAS  Google Scholar 

  • 5.

    Li, N., Hao, M., Phalen, R. F., Hinds, W. C. & Nel, A. E. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 109, 250–265 (2003).

    CAS  Google Scholar 

  • 6.

    Xiao, G. G., Wang, M., Li, N., Loo, J. A. & Nel, A. E. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J. Biol. Chem. 278, 50781–50790 (2003).

    CAS  Google Scholar 

  • 7.

    Bates, J. T. et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53, 4003–4019 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K. & Burnett, R. T. Ambient PM 2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM 2.5 oxidative potential: a case-crossover study. J. Environ. Health 15, 46 (2016).

    Google Scholar 

  • 9.

    Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  • 10.

    Crobeddu, B., Aragao-Santiago, L., Bui, L.-C., Boland, S. & Squiban, A. B. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230, 125–133 (2017).

    CAS  Google Scholar 

  • 11.

    Liu, Q. et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ. Sci. Technol. 48, 12920–12929 (2014).

    ADS  CAS  Google Scholar 

  • 12.

    Shiraiwa, M. et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51, 13545–13567 (2017).

    ADS  CAS  Google Scholar 

  • 13.

    Daellenbach, K. R. et al. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmos. Meas. Tech. 9, 23–39 (2016).

    CAS  Google Scholar 

  • 14.

    Daellenbach, K. R. et al. Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: source identification and uncertainty assessment. Atmos. Chem. Phys. 17, 13265–13282 (2017).

    ADS  CAS  Google Scholar 

  • 15.

    Daellenbach, K. R. et al. Impact of anthropogenic and biogenic sources on the seasonal variation of the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high resolution mass spectrometry. Atmos. Chem. Phys. 19, 5973–5991 (2019).

    ADS  CAS  Google Scholar 

  • 16.

    Vlachou, A. et al. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period. Atmos. Chem. Phys. 18, 6187–6206 (2018).

    ADS  CAS  Google Scholar 

  • 17.

    Amato, F. et al. Urban air quality: the challenge of traffic non-exhaust emissions. J. Hazard. Mater. 275, 31–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    World Health Organization Regional Office for Europe. Review Of Evidence On Health Aspects Of Air Pollution. REVIHAAP Project. https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report (WHO, 2013).

  • 19.

    Calas, A. et al. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci. Rep. 7, 11617 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Charrier, J. & Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 12, 9321–9333 (2012).

    ADS  CAS  Google Scholar 

  • 21.

    Sauvain, J.-J., Rossi, M. J. & Riediker, M. Comparison of three acellular tests for assessing the oxidation potential of nanomaterials. Aerosol Sci. Technol. 47, 218–227 (2013).

    ADS  CAS  Google Scholar 

  • 22.

    Fang, T. et al. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environ. Sci. Technol. 51, 2611–2620 (2017).

    ADS  CAS  Google Scholar 

  • 23.

    Bruns, E. A. et al. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 15, 2825–2841 (2015).

    ADS  CAS  Google Scholar 

  • 24.

    Jiang, J. et al. Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmos. Chem. Phys. 19, 15247–15270 (2019).

    ADS  CAS  Google Scholar 

  • 25.

    Brugge, D., Durant, J. L. & Rioux, C. Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. J. Environ. Health 6, 23 (2007).

    Google Scholar 

  • 26.

    European Environment Agency Air Quality In Europe 2016. Report No. 28/2016, https://www.eea.europa.eu/publications/air-quality-in-europe-2016 (EEA, 2016).

  • 27.

    Denier van der Gon, H. et al. Non-exhaust emissions. In European Emission Inventories and Projections for Road Transport Non-Exhaust Emissions: Analysis of Consistency and Gaps in Emission Inventories from EU Member States (ed. Amato, F.) Ch. 5, 101–121, https://www.sciencedirect.com/science/article/pii/B9780128117705000054 (Academic Press, 2018).

  • 28.

    European Official Journal Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2016.344.01.0001.01.ENG (2016).

  • 29.

    Cofala, J. & Klimont, Z. Emissions From Households And Other Small Combustion Sources And Their Reduction Potential. TSAP Report 5, Version 1.0, https://ec.europa.eu/environment/air/pdf/TSAP-SMALL_SOURCES-20120612%5B1%5D.pdf (DG Environment of the European Commission, 2012).

  • 30.

    European Environment Agency Size Of The Vehicle Fleet. https://www.eea.europa.eu/data-and-maps/indicators/size-of-the-vehicle-fleet/size-of-the-vehicle-fleet-8 (EEA, 2018).

  • 31.

    European Statistical Office Population And Population Statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php/Population_and_population_change_statistics (Eurostat, 2018).

  • 32.

    Canagaratna, M. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Allan, J. D. et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer. 1. Techniques of data interpretation and error analysis. J. Geophys. Res. Atmos. 108, https://doi.org/10.1029/2002JD002358 (2003).

  • 34.

    Waked, A. et al. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos. Chem. Phys. 14, 3325–3346 (2014).

    ADS  Google Scholar 

  • 35.

    Albinet, A., Tomaz, S. & Lestremau, F. A really quick easy cheap effective rugged and safe (QuEChERS) extraction procedure for the analysis of particle-bound PAHs in ambient air and emission samples. Sci. Total Environ. 450/451, 31–38 (2013).

    ADS  Google Scholar 

  • 36.

    Albinet, A., Nalin, F., Tomaz, S., Beaumont, J. & Lestremau, F. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC–NICIMS. Anal. Bioanal. Chem. 406, 3131–3148 (2014).

    CAS  Google Scholar 

  • 37.

    Srivastava, D. et al. Speciation of organic fractions does matter for aerosol source apportionment. Part 2: Intensive short-term campaign in the Paris area (France). Sci. Total Environ. 634, 267–278 (2018).

    ADS  CAS  Google Scholar 

  • 38.

    Verlhac, S. & Albinet, A. European interlaboratory comparison for the analysis of PAH in ambient air. http://www.lcsqa.org/rapport/2015/ineris/european-interlaboratory-comparison-for-the-analysis-of-pah-in-ambient-air (LCSQA, 2015).

  • 39.

    Samaké, A. et al. Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmos. Chem. Phys. 19, 3357–3374 (2019).

    ADS  Google Scholar 

  • 40.

    Nozière, B. et al. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem. Rev. 115, 3919–3983 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Birch, M. & Cary, R. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25, 221–241 (1996).

    ADS  CAS  Google Scholar 

  • 42.

    Cavalli, F., Viana, M., Yttri, K. E., Genberg, J. & Putaud, J.-P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 3, 79–89 (2010).

    CAS  Google Scholar 

  • 43.

    Piazzalunga, A., Bernardoni, V., Fermo, P. & Vecchi, R. Optimisation of analytical procedures for the quantification of ionic and carbonaceous fractions in the atmospheric aerosol and applications to ambient samples. Anal. Bioanal. Chem. 405, 1123–1132 (2013).

    CAS  Google Scholar 

  • 44.

    Jaffrezo, J., Calas, N. & Bouchet, M. Carboxylic acids measurements with ionic chromatography. Atmos. Environ. 32, 2705–2708 (1998).

    ADS  CAS  Google Scholar 

  • 45.

    Calas, A. et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM 10 samples from the city of Chamonix (France). Atmos. Chem. Phys. 18, 7863–7875 (2018).

    ADS  CAS  Google Scholar 

  • 46.

    Foucaud, L., Wilson, M., Brown, D. & Stone, V. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol. Lett. 174, 1–9 (2007).

    CAS  Google Scholar 

  • 47.

    Zhou, J. et al. Development, characterization and first deployment of an improved online reactive oxygen species analyzer. Atmos. Meas. Tech. 11, 65–80 (2018).

    CAS  Google Scholar 

  • 48.

    Zhou, J. et al. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions. Atmos. Chem. Phys. 18, 6985–7000 (2018).

    ADS  CAS  Google Scholar 

  • 49.

    Charrier, J. G. et al. Oxidant production from source-oriented particulate matter. Part 1: Oxidative potential using the dithiothreitol (DTT) assay. Atmos. Chem. Phys. 15, 2327–2340 (2015).

    ADS  CAS  Google Scholar 

  • 50.

    Cho, A. K. et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 99, 40–47 (2005).

    CAS  Google Scholar 

  • 51.

    Mudway, I. S. et al. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch. Biochem. Biophys. 423, 200–212 (2004).

    CAS  Google Scholar 

  • 52.

    Huang, W. et al. Optimization of the measurement of particle-bound reactive oxygen species with 2′, 7′-dichlorofluorescin (DCFH). Wat. Air Soil Pollut. 227, 164 (2016).

    ADS  Google Scholar 

  • 53.

    Künzi, L. et al. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Sci. Rep. 5, 11801 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Paatero, P. & Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994).

    Google Scholar 

  • 55.

    Paatero, P. The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8, 854–888 (1999).

    MathSciNet  Google Scholar 

  • 56.

    Canonaco, F., Crippa, M., Slowik, J., Baltensperger, U. & Prévôt, A. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 6, 3649–3661 (2013).

    Google Scholar 

  • 57.

    Crippa, M. et al. Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. J. Geophys. Res. Atmos. 118, 1950–1963 (2013).

    ADS  CAS  Google Scholar 

  • 58.

    Bozzetti, C. et al. Size-resolved identification, characterization, and quantification of primary biological organic aerosol at a European rural site. Environ. Sci. Technol. 50, 3425–3434 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Amato, F. et al. Traffic induced particle resuspension in Paris: emission factors and source contributions. Atmos. Environ. 129, 114–124 (2016).

    ADS  CAS  Google Scholar 

  • 60.

    Yang, A. et al. Children’s respiratory health and oxidative potential of PM2. 5: the PIAMA birth cohort study. Occup. Environ. Med. 73, 154–160 (2016).

    PubMed  Google Scholar 

  • 61.

    Fang, T. et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 16, 3865–3879 (2016).

    ADS  CAS  Google Scholar 

  • 62.

    Bates, J. T. et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ. Sci. Technol. 49, 13605–13612 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Yang, A. et al. Agreement of central site measurements and land use regression modeled oxidative potential of PM2.5 with personal exposure. Environ. Res. 140, 397–404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Yanosky, J. D., Tonne, C. C., Beevers, S. D., Wilkinson, P. & Kelly, F. J. Modeling exposures to the oxidative potential of PM10. Environ. Sci. Technol. 46, 7612–7620 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Perrone, M. G. et al. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmos. Environ. 128, 104–113 (2016).

    ADS  CAS  Google Scholar 

  • 66.

    Szigeti, T. et al. Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 518/519, 534–544 (2015).

    ADS  Google Scholar 

  • 67.

    Ntziachristos, L., Froines, J. R., Cho, A. K. & Sioutas, C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part. Fibre Toxicol. 4, 5 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Shirmohammadi, F. et al. Fine and ultrafine particulate organic carbon in the Los Angeles basin: trends in sources and composition. Sci. Total Environ. 541, 1083–1096 (2016).

    ADS  CAS  Google Scholar 

  • 69.

    Shafer, M. M., Hemming, J. D. C., Antkiewicz, D. S. & Schauer, J. J. Oxidative potential of size-fractionated atmospheric aerosol in urban and rural sites across Europe. Faraday Discuss. 189, 381–405 (2016).

    ADS  CAS  Google Scholar 

  • 70.

    Verma, V. et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environ. Sci. Technol. 49, 4646–4656 (2015).

    ADS  CAS  Google Scholar 

  • 71.

    Weber, S. et al. An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmos. Chem. Phys. 18, 9617–9629 (2018).

    ADS  CAS  Google Scholar 

  • 72.

    Kramer, A. J. et al. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol. Atmos. Environ. 130, 211–218 (2016).

    ADS  CAS  Google Scholar 

  • 73.

    Wang, S. et al. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmos. Chem. Phys. 18, 3987–4003 (2018).

    ADS  CAS  Google Scholar 

  • 74.

    Saffari, A. et al. Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin. Atmos. Environ. 120, 286–296 (2015).

    ADS  CAS  Google Scholar 

  • 75.

    Tong, H. et al. Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid. Environ. Sci. Technol. 52, 11642–11651 (2018).

    CAS  Google Scholar 

  • 76.

    Lovett, C., Sowlat, M. H., Saliba, N. A., Shihadeh, A. L. & Sioutas, C. Oxidative potential of ambient particulate matter in Beirut during Saharan and Arabian dust events. Atmos. Environ. 188, 34–42 (2018).

    ADS  CAS  Google Scholar 

  • 77.

    Jiang, H. & Jang, M. Dynamic oxidative potential of atmospheric organic aerosol under ambient sunlight. Environ. Sci. Technol. 52, 7496–7504 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Tuet, W. Y. et al. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmos. Chem. Phys. 17, 839–853 (2017).

    ADS  CAS  Google Scholar 

  • 79.

    McWhinney, R., Zhou, S. & Abbatt, J. Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning. Atmos. Chem. Phys. 13, 9731–9744 (2013).

    ADS  Google Scholar 

  • 80.

    Chung, M. Y. et al. Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. Environ. Sci. Technol. 40, 4880–4886 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Lakey, P. S. et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 6, 32916 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Hildebrandt Ruiz, L. & Yarwood, G. Interactions Between Organic Aerosol And NOy: Influence On Oxidant Production. http://aqrp.ceer.utexas.edu/projectinfoFY12_13%5C12-012%5C12-012%20Final%20Report.pdf (University of Texas at Austin and ENVIRON International Corporation, 2013).

  • 84.

    Nenes, A., Pandis, S. N. & Pilinis, C. ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–152 (1998).

    CAS  Google Scholar 

  • 85.

    Koo, B., Knipping, E. & Yarwood, G. 1.5-dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 95, 158–164 (2014).

    ADS  CAS  Google Scholar 

  • 86.

    Ciarelli, G. et al. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmos. Chem. Phys. 17, 7653–7669 (2017).

    ADS  CAS  Google Scholar 

  • 87.

    Jiang, J. et al. Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmos. Chem. Phys. 19, 3747–3768 (2019).

    ADS  CAS  Google Scholar 

  • 88.

    Platt, S. M. et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 7, 4926 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Kuenen, J., Visschedijk, A., Jozwicka, M. & Denier Van Der Gon, H. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976 (2014).

    ADS  Google Scholar 

  • 90.

    Emmons, L. K. et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 3, 43–67 (2010).

    ADS  Google Scholar 

  • 91.

    Fernandes, A. et al. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling. In 36th Int. Symp. on Remote Sensing of Environment Vol. 47, 187–193 (International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2015).

  • 92.

    Denjean, C. et al. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmos. Chem. Phys. 16, 1081–1104 (2016).

    ADS  CAS  Google Scholar 

  • 93.

    Hulskotte, J., van der Gon, H. D., Visschedijk, A. & Schaap, M. Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 56, 223–231 (2007).

    CAS  Google Scholar 

  • 94.

    Tørseth, K. et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).

    ADS  Google Scholar 

  • 95.

    Aas, W. & Breivik, K. Heavy Metals and POP Measurements, 2011. EMEP/CCC-Report 4/2013, https://projects.nilu.no/ccc/reports/cccr4-2013.pdf (European Monitoring and Evaluation Programme, 2013).

  • 96.

    Crippa, M. et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 14, 6159–6176 (2014).

    ADS  Google Scholar 

  • 97.

    Putaud, J.-P. et al. A European aerosol phenomenology. 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320 (2010).

    ADS  CAS  Google Scholar 

  • 98.

    Charron, A. et al. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. 19, 5187–5207 (2019).

    ADS  CAS  Google Scholar 

  • 99.

    European Chemicals Agency Default Human Factor Values For Use In Exposure Assessments For Biocidal Products. Recommendation no. 14 of the BPC Ad hoc Working Group on Human Exposure https://echa.europa.eu/documents/10162/21664016/recom_14+_default+human_factor_values_biocidal+products_en.pdf/88354d31-8a3a-475a-9c7d-d8ef8088d004 (ECHA, accessed 12 June 2017).

  • 100.

    United States Environmental Protection Agency A Summary of The Recommended Values From the Exposure Factors Handbook: 2011 Edition https://www.epa.gov/expobox/exposure-assessment-tools-approaches-indirect-estimation-scenario-evaluation#factors (EPA, 2011).

  • 101.

    Miller, F. J., Asgharian, B., Schroeter, J. D. & Price, O. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 99, 14–26 (2016).

    ADS  CAS  Google Scholar 

  • 102.

    Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

    Google Scholar 

  • 103.

    Leni, Z. et al. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS One pone.0233425 (2020).

  • 104.

    National Center for Atmospheric Research. Weather Research and Forecasting Model WRF-ARW Version 3 Modeling System User’s Guide (NCAR, 2016).