Trending

RNA nucleation by MSL2 induces selective X chromosome compartmentalization

  • 1.

    Meller, V. H. et al. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol. 10, 136–143 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Samata, M. & Akhtar, A. Dosage compensation of the X chromosome: a complex epigenetic assignment involving chromatin regulators and long noncoding RNAs. Annu. Rev. Biochem. 87, 323–350 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 7, a019398 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Villa, R., Schauer, T., Smialowski, P., Straub, T. & Becker, P. B. PionX sites mark the X chromosome for dosage compensation. Nature 537, 244–248 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 5.

    Alekseyenko, A. A. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134, 599–609 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Valsecchi, C. I. K. et al. Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells. Nat. Commun. 9, 3626 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 7.

    Bai, X., Alekseyenko, A. A. & Kuroda, M. I. Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J. 23, 2853–2861 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Ilik, I. A. et al. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 51, 156–173 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Kelley, R. L. et al. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81, 867–877 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Figueiredo, M. L. et al. Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions. PLoS Genet. 10, e1004865 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Hallacli, E. et al. Msl1-mediated dimerization of the dosage compensation complex is essential for male X-chromosome regulation in Drosophila. Mol. Cell 48, 587–600 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Zheng, S. et al. Structural basis of X chromosome DNA recognition by the MSL2 CXC domain during Drosophila dosage compensation. Genes Dev. 28, 2652–2662 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Fauth, T., Müller-Planitz, F., König, C., Straub, T. & Becker, P. B. The DNA binding CXC domain of MSL2 is required for faithful targeting the Dosage Compensation Complex to the X chromosome. Nucleic Acids Res. 38, 3209–3221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Larson, A. G. & Narlikar, G. J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0264-6 (2020).

  • 16.

    Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Meller, V. H. & Rattner, B. P. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21, 1084–1091 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Kim, M., Faucillion, M.-L. & Larsson, J. RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation. PLoS Genet. 14, e1007842 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Apte, M. S. et al. Generation of a useful roX1 allele by targeted gene conversion. G3 (Bethesda) 4, 155–162 (2014).

    Article  CAS  Google Scholar 

  • 20.

    Straub, T. et al. Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma 114, 352–364 (2005).

    PubMed  Article  Google Scholar 

  • 21.

    Lin, Y. et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802.e12 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 23.

    Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 24.

    Schauer, T. et al. Chromosome topology guides the Drosophila dosage compensation complex for target gene activation. EMBO Rep. 18, 1854–1868 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 25.

    Toll-Riera, M., Radó-Trilla, N., Martys, F. & Albà, M. M. Role of low-complexity sequences in the formation of novel protein coding sequences. Mol. Biol. Evol. 29, 883–886 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Baron-Benhamou, J., Gehring, N. H., Kulozik, A. E. & Hentze, M. W. Using the lambdaN peptide to tether proteins to RNAs. Methods Mol. Biol. 257, 135–154 (2004).

    CAS  PubMed  Google Scholar 

  • 28.

    Quinn, J. J. et al. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev. 30, 191–207 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    McFarland, T. J. et al. Evaluation of a novel short polyadenylation signal as an alternative to the SV40 polyadenylation signal. Plasmid 56, 62–67 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Flemr, M. & Bühler, M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 12, 709–716 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Raja, S. J. et al. The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol. Cell 38, 827–841 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Chelmicki, T. et al. MOF-associated complexes ensure stem cell identity and Xist repression. eLife 3, e02024 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Ramírez, F. et al. High-affinity sites form an interaction network to facilitate spreading of the MSL complex across the X chromosome in Drosophila. Mol. Cell 60, 146–162 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Venken, K. J. T., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 36.

    Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 37.

    Chao, S. H. & Price, D. H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793–31799 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters https://doi.org/10.19185/matters.201702000010 (2017).

  • 39.

    Johansen, K. M. et al. Polytene chromosome squash methods for studying transcription and epigenetic chromatin modification in Drosophila using antibodies. Methods 48, 387–397 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Chlamydas, S. et al. Functional interplay between MSL1 and CDK7 controls RNA polymerase II Ser5 phosphorylation. Nat. Struct. Mol. Biol. 23, 580–589 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Neyman, J. & Pearson, E. S. in Breakthroughs in Statistics (eds Kotz, S. & Johnson, N. L.) 73–108 (Springer, 1992).

  • 44.

    Yang, Z. & dos Reis, M. Statistical properties of the branch-site test of positive selection. Mol. Biol. Evol. 28, 1217–1228 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Arrigoni, L. et al. RELACS nuclei barcoding enables high-throughput ChIP-seq. Commun. Biol. 1, 214 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Skene, P. J. & Henikoff, S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife 4, e09225 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Grüning, B. A. et al. The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nucleic Acids Res. 45 (W1), W560–W566 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  • 56.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  CAS  Google Scholar 

  • 58.

    Piovesan, D. et al. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 46, D471–D476 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Mier, P. & Andrade-Navarro, M. A. dAPE: a web server to detect homorepeats and follow their evolution. Bioinformatics 33, 1221–1223 (2017).

    CAS  PubMed  Google Scholar 

  • 60.

    Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Koulouras, G. et al. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res. 46 (W1), W467–W472 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Joshi, S. S. & Meller, V. H. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr. Biol. 27, 1393–1402.e2 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).

    CAS  PubMed  Article  Google Scholar 

  • Leave a Reply