Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer

41586 2020 2911 Fig1 HTML
  • 1.

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005); corrigendum 37, 328 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Ma, X. et al. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity. J. Exp. Med. 215, 1555–1569 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Naslavsky, N., Weigert, R. & Donaldson, J. G. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol. Biol. Cell 15, 3542–3552 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

    READ  Best Garden Tool Sets (2020 Reviews) • Sow Small Garden
  • 13.

    Maxwell, K. N., Fisher, E. A. & Breslow, J. L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl Acad. Sci. USA 102, 2069–2074 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Zhang, D. W. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282, 18602–18612 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Lagace, T. A. et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Invest. 116, 2995–3005 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J. Biol. Chem. 284, 28856–28864 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Canuel, M. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 8, e64145 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Demers, A. et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler. Thromb. Vasc. Biol. 35, 2517–2525 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Jonas, M. C., Costantini, C. & Puglielli, L. PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep. 9, 916–922 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Blom, D. J. et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl. J. Med. 370, 1809–1819 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    READ  Spotify seeks to woo music labels with promo model
  • 24.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281–2308 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Kühnast, S. et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J. Lipid Res. 55, 2103–2112 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Chan, J. C. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl Acad. Sci. USA 111, 11774–11779 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Chandramohan, V. et al. Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J. Immunother. Cancer 7, 142 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Shan, L. et al. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun. 375, 69–73 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Fasano, T., Sun, X. M., Patel, D. D. & Soutar, A. K. Degradation of LDLR protein mediated by ‘gain of function’ PCSK9 mutants in normal and ARH cells. Atherosclerosis 203, 166–171 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Duff, C. J. et al. Antibody-mediated disruption of the interaction between PCSK9 and the low-density lipoprotein receptor. Biochem. J. 419, 577–584 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Yu, Y. Y. et al. Definition and transfer of a serological epitope specific for peptide-empty forms of MHC class I. Int. Immunol. 11, 1897–1906 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

    READ  Congress faces a government shutdown if a spending deal isn't reached this week - USA TODAY
  • 36.

    Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47 (W1), W171–W174 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Borowicz, S. et al. The soft agar colony formation assay. J. Vis. Exp. 92, e51998 (2014).

    Google Scholar 

  • 41.

    Moore, M. W., Carbone, F. R. & Bevan, M. J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54, 777–785 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Curtsinger, J. M., Lins, D. C. & Mescher, M. F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).

    CAS  PubMed  Google Scholar 

  • 43.

    Park, S. J., Yoon, B. H., Kim, S. K. & Kim, S. Y. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med. Genomics 12 (Suppl 5), 101 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  Google Scholar 

  • 45.

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Leave a Reply