Host ANP32A mediates the assembly of the influenza virus replicase

41586 2020 2927 Fig1 HTML
  • 1.

    Krammer, F. et al. Influenza. Nat. Rev. Dis. Primers 4, 3 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Fodor, E. & Te Velthuis, A. J. W. Structure and function of the influenza virus transcription and replication machinery. Cold Spring Harb. Perspect. Med. 10, a038398 (2019).

    Article  Google Scholar 

  • 3.

    Wandzik, J. M., Kouba, T. & Cusack, S. Structure and function of influenza polymerase. Cold Spring Harb. Perspect. Med. 10, a038372 (2020).

    Article  Google Scholar 

  • 4.

    Long, J. S. et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529, 101–104 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Walker, A. P. & Fodor, E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 27, 398–407 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Peacock, T. P., Sheppard, C. M., Staller, E. & Barclay, W. S. Host determinants of influenza RNA synthesis. Annu. Rev. Virol. 6, 215–233 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Staller, E. et al. ANP32 proteins are essential for influenza virus replication in human cells. J. Virol. 93, e00217-19 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Zhang, H. et al. Fundamental contribution and host range determination of ANP32A and ANP32B in influenza A virus polymerase activity. J. Virol. 93, e00174-19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Huyton, T. & Wolberger, C. The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins. Protein Sci. 16, 1308–1315 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Thierry, E. et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61, 125–137 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Fan, H. et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573, 287–290 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Peng, Q. et al. Structural insight into RNA synthesis by influenza D polymerase. Nat. Microbiol. 4, 1750–1759 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Wandzik, J.M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181, 877–893 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Chang, S. et al. Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 Å resolution. Mol. Cell 57, 925–935 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Long, J. S. et al. Species specific differences in use of ANP32 proteins by influenza A virus. eLife 8, e45066 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

    READ  ‘Are we going to go through this again?’ A New York hospital braces for second Covid wave
  • 18.

    Bi, Z. et al. Insights into species-specific regulation of ANP32A on the mammalian-restricted influenza virus polymerase activity. Emerg. Microbes Infect. 8, 1465–1478 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Zhang, H. et al. A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathog. 16, e1008330 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Baker, S.F., Ledwith, M.P. & Mehle, A. Differential splicing of ANP32A in birds alters its ability to stimulate rna synthesis by restricted influenza polymerase. Cell Rep. 24, 2581–2588 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Camacho-Zarco, A. R. et al. Molecular basis of host-adaptation interactions between influenza virus polymerase PB2 subunit and ANP32A. Nat. Commun. 11, 3656 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Mistry, B. et al. Elucidating the interactions between influenza virus polymerase and host factor ANP32A. J. Virol. 94, e01353-19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Domingues, P. & Hale, B. G. Functional insights into ANP32A-dependent influenza A virus polymerase host restriction. Cell Rep. 20, 2538–2546 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Mehle, A. & Doudna, J. A. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl Acad. Sci. USA 106, 21312–21316 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25.

    Yamada, S. et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog. 6, e1001034 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Chin, A. W. H. et al. Influenza A viruses with different amino acid residues at PB2-627 display distinct replication properties in vitro and in vivo: revealing the sequence plasticity of PB2-627 position. Virology 468–470, 545–555 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 27.

    Vreede, F. T., Jung, T. E. & Brownlee, G. G. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78, 9568–9572 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Nilsson, B. E., Te Velthuis, A. J. W. & Fodor, E. Role of the PB2 627 domain in influenza A virus polymerase function. J. Virol. 91, e02467-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Mänz, B., Brunotte, L., Reuther, P. & Schwemmle, M. Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat. Commun. 3, 802 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 30.

    Sugiyama, K., Kawaguchi, A., Okuwaki, M. & Nagata, K. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 4, e08939 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Pan, J. et al. Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature 577, 275–279 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 32.

    Lukarska, M. et al. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541, 117–121 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

    READ  Growing Perennial Foods: Raising herbs, vegetables, and fruit — Stone Pier Press
  • 33.

    Serna Martin, I. et al. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70, 1101–1110 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Chen, K. Y., Santos Afonso, E. D., Enouf, V., Isel, C. & Naffakh, N. Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. PLoS Pathog. 15, e1008034 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Killip, M. J., Fodor, E. & Randall, R. E. Influenza virus activation of the interferon system. Virus Res. 209, 11–22 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Bieniossek, C., Imasaki, T., Takagi, Y. & Berger, I. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem. Sci. 37, 49–57 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  Article  Google Scholar 

  • 40.

    Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. 8, 629 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

  • 44.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  • 45.

    Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Burnley, T. Introducing the Proceedings of the CCP-EM Spring Symposium. Acta Crystallogr. D 73, 467–468 (2017).

    Article  Google Scholar 

  • 47.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  Google Scholar 

  • 48.

    Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46 (W1), W296–W303 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

    READ  Can the stain of forced and child labour be removed from cotton?
  • 50.

    Crescenzo-Chaigne, B., Naffakh, N. & van der Werf, S. Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Virology 265, 342–353 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Tang, Y. S., Lo, C. Y., Mok, C. K., Chan, P. K. & Shaw, P. C. The extended C-terminal region of influenza C virus nucleoprotein is important for nuclear import and ribonucleoprotein activity. J. Virol. 93, e02048-18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Paterson, D., te Velthuis, A. J., Vreede, F. T. & Fodor, E. Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein-independent manner. J. Virol. 88, 339–344 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Robb, N. C., Smith, M., Vreede, F. T. & Fodor, E. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J. Gen. Virol. 90, 1398–1407 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Deng, T. et al. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J. Virol. 80, 11911–11919 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Vreede, F. T. & Brownlee, G. G. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J. Virol. 81, 2196–2204 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Engelhardt, O. G., Smith, M. & Fodor, E. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 79, 5812–5818 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Leave a Reply