Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis

  • 1.

    Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    CAS  Article  Google Scholar 

  • 2.

    Repa, J. J. & Mangelsdorf, D. J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16, 459–481 (2000).

    CAS  Article  Google Scholar 

  • 3.

    Edwards, P. A., Muroya, H. & Gould, R. G. In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J. Lipid Res. 13, 396–401 (1972).

    CAS  PubMed  Google Scholar 

  • 4.

    Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Xiao, X. et al. Cholesterol modification of smoothened is required for hedgehog signaling. Mol. Cell 66, 154–162 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Hu, A. & Song, B. L. The interplay of Patched, Smoothened and cholesterol in Hedgehog signaling. Curr. Opin. Cell Biol. 61, 31–38 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Chen, L. et al. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 60, 1765–1775 (2019).

    CAS  Google Scholar 

  • 8.

    Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    CAS  Article  Google Scholar 

  • 10.

    DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Cahill, G. F., Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    CAS  Article  Google Scholar 

  • 12.

    Song, B. L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    CAS  Article  Google Scholar 

  • 13.

    Liu, T.-F. et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 16, 213–225 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Jiang, L. Y. et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J. Biol. Chem. 293, 4047–4055 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Song, B.-L. & DeBose-Boyd, R. A. Ubiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase. J. Biol. Chem. 279, 28798–28806 (2004).

    CAS  Article  Google Scholar 

  • 16.

    Song, B.-L., Javitt, N. B. & DeBose-Boyd, R. A. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab. 1, 179–189 (2005).

    CAS  Article  Google Scholar 

  • 17.

    Cao, J. et al. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab. 6, 115–128 (2007).

    CAS  Article  Google Scholar 

  • 18.

    Nijman, S. M. B. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    CAS  Article  Google Scholar 

  • 19.

    Sever, N. et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 278, 52479–52490 (2003).

    CAS  Article  Google Scholar 

  • 20.

    Rong, S. et al. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. eLife 6, e25015 (2017).

    Article  Google Scholar 

  • 21.

    Yang, C. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J. Biol. Chem. 281, 27816–27826 (2006).

    CAS  Article  Google Scholar 

  • 22.

    Hillgartner, F. B., Salati, L. M. & Goodridge, A. G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 75, 47–76 (1995).

    CAS  Article  Google Scholar 

  • 23.

    Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441–3446 (2010).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Condon, K. J. & Sabatini, D. M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci. 132, 222570 (2019).

    Article  Google Scholar 

  • 25.

    Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  Article  Google Scholar 

  • 26.

    Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  Article  Google Scholar 

  • 27.

    González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020).

    Article  Google Scholar 

  • 28.

    Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Arnedo, M. et al. More than one HMG-CoA lyase: The classical mitochondrial enzyme plus the peroxisomal and the cytosolic ones. Int. J. Mol. Sci. 20, 6124 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Puchalska, P. et al. Hepatocyte–macrophage acetoacetate shuttle protects against tissue fibrosis. Cell Metab. 29, 383–398.e7 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Liu, K. et al. Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex II. Proc. Natl Acad. Sci. USA 117, 2462–2472 (2020).

    CAS  Article  Google Scholar 

  • 35.

    Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57–78 (2018).

    CAS  Article  Google Scholar 

  • 36.

    Paseban, M., Butler, A. E. & Sahebkar, A. Mechanisms of statin-induced new-onset diabetes. J. Cell. Physiol. 234, 12551–12561 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Balaz, M. et al. Inhibition of mevalonate pathway prevents adipocyte browning in mice and men by affecting protein prenylation. Cell Metab. 29, 901–916.e8 (2019).

    CAS  Article  Google Scholar