Electrical switching of magnetic order in an orbital Chern insulator

41586 2020 2963 Fig1 HTML
  • 1.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); correction 581, E3 (2020).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Xie, M. & MacDonald, A. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 9.

    Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: anomalous Hall effect and a lattice model. Phys. Rev. Res. 1, 033126 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Liu, J. & Dai, X. Theories for the correlated insulating states and quantum anomalous Hall phenomena in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1911.03760 (2020).

    READ  Home | MyFootball
  • 11.

    Wu, F. & Das Sarma, S. Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 124, 046403 (2020).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Chatterjee, S., Bultinck, N. & Zaletel, M. P. Symmetry breaking and skyrmionic transport in twisted bilayer graphene. Phys. Rev. B 101, 165141 (2020).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Repellin, C., Dong, Z., Zhang, Y.-H. & Senthil, T. Ferromagnetism in narrow bands of moiré superlattices. Phys. Rev. Lett. 124, 187601 (2020).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Alavirad, Y. & Sau, J. D. Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1907.13633 (2019).

  • 15.

    Ma, Z. et al. Topological flat bands in twisted trilayer graphene. Preprint at https://arxiv.org/abs/1905.00622 (2019).

  • 16.

    Park, Y., Chittari, B. L. & Jung, J. Gate-tunable topological flat bands in twisted monolayer-bilayer graphene. Phys. Rev. B 102, 035411 (2020).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Rademaker, L., Protopopov, I. V. & Abanin, D. A. Topological flat bands and correlated states in twisted monolayer-bilayer graphene. Phys. Rev. Res. 2, 033150 (2020).

    CAS  Article  Google Scholar 

  • 18.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Zhu, J., Su, J.-J. & MacDonald, A. H. The curious magnetic properties of orbital Chern insulators. Preprint at https://arxiv.org/abs/2001.05084 (2020).

  • 20.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).

    READ  Gingrich and Huckabee back Newsom recall effort - Politico

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 22.

    Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Liu, J., Ma, Z., Gao, J. & Dai, X. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X 9, 031021 (2019).

    CAS  Google Scholar 

  • 24.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020); correction 583, E27 (2020).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    ADS  CAS  Article  Google Scholar 

  • 31.

    He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-1030-6 (2020).

    READ  Fauci: California had no choice but to impose stay-home orders - POLITICO
  • 32.

    Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C 15, L1299 (1982).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Preprint at https://arxiv.org/abs/2006.08053 (2020).

  • 34.

    Chiba, D. et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys. Rev. Lett. 104, 106601 (2010).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Zhang, S. et al. Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. Nano Lett. 20, 709–714 (2020).

    ADS  Article  Google Scholar 

  • 36.

    Beekman, M., Heideman, C. L. & Johnson, D. C. Ferecrystals: non-epitaxial layered intergrowths. Semicond. Sci. Technol. 29, 064012 (2014).

    ADS  Article  Google Scholar 

  • 37.

    Viola, G. & DiVincenzo, D. P. Hall effect gyrators and circulators. Phys. Rev. X 4, 021019 (2014).

    Google Scholar 

  • 38.

    Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • Leave a Reply