Drivers and dynamics of a massive adaptive radiation in cichlid fishes

  • 1.

    Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • 3.

    Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

  • 4.

    Glor, R. E. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270 (2010).

    Article  Google Scholar 

  • 5.

    Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).

    Article  Google Scholar 

  • 6.

    Danley, P. D. & Kocher, T. D. Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol. Ecol. 10, 1075–1086 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Streelman, J. T. & Danley, P. D. The stages of vertebrate evolutionary radiation. Trends Ecol. Evol. 18, 126–131 (2003).

    Article  Google Scholar 

  • 8.

    Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Sepkoski, J. J., Jr. Rates of speciation in the fossil record. Phil. Trans. R. Soc. Lond. B 353, 315–326 (1998).

    Article  Google Scholar 

  • 10.

    Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Fryer, G. & Iles, T. D. The Cichlid Fishes of the Great Lakes of Africa (T.F.H. Publications, 1972).

  • 15.

    Ronco, F., Büscher, H. H., Indermaur, A. & Salzburger, W. The taxonomic diversity of the cichlid fish fauna of ancient Lake Tanganyika, East Africa. J. Gt. Lakes Res. 46, 1067–1078 (2020).

    Article  Google Scholar 

  • 16.

    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Salzburger, W., Van Bocxlaer, B. & Cohen, A. S. Ecology and evolution of the African Great Lakes and their faunas. Annu. Rev. Ecol. Evol. Syst. 45, 519–545 (2014).

    Article  Google Scholar 

  • 18.

    Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid diversification across continents. Nat. Commun. https://doi.org/10.1038/s41467-020-17827-9 (2020).

  • 19.

    Koch, M. et al. Evolutionary history of the endemic Lake Tanganyika cichlid fish Tylochromis polylepis: A recent intruder to a mature adaptive radiation. J. Zool. Syst. Evol. Res. 45, 64–71 (2007).

    Article  Google Scholar 

  • 20.

    Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst. Biol. 51, 113–135 (2002).

    PubMed  Article  Google Scholar 

  • 21.

    Schedel, F. D. B., Musilova, Z. & Schliewen, U. K. East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation. BMC Evol. Biol. 19, 94 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Cohen, A. S., Soreghan, M. J. & Scholz, C. A. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift system. Geology 21, 511–514 (1993).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 25.

    Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).

    Article  Google Scholar 

  • 26.

    Salzburger, W. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol. Ecol. 18, 169–185 (2009).

    PubMed  Article  Google Scholar 

  • 27.

    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Grant, P. R. & Grant, B. R. 40 Years of Evolution: Darwin’s Finches on Daphne Major Island (Princeton Univ. Press, 2014).

  • 32.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Conte, M. A., Gammerdinger, W. J., Bartie, K. L., Penman, D. J. & Kocher, T. D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18, 341 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Böhne, A. et al. Repeated evolution versus common ancestry: Sex chromosome evolution in the haplochromine Pseudocrenilabrus philander. Genome Biol. Evol. 11, 439–458 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Malmstrøm, M., Matschiner, M., Tørresen, O. K., Jakobsen, K. S. & Jentoft, S. Data descriptor: Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Sci. Data 4, 1–13 (2017).

    Article  CAS  Google Scholar 

  • 44.

    Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287, 2196–2204 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 45.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 48.

    Ewels, P., Magnusson, M., Lundin, S., Käller, M. & Multi, Q. C. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19 (Suppl 6), 153 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Ogilvie, H. A., Bouckaert, R. R. & Drummond, A. J. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34, 2101–2114 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Schunke, A. C., Bromiley, P. A., Tautz, D. & Thacker, N. A. TINA manual landmarking tool: software for the precise digitization of 3D landmarks. Front. Zool. 9, 6 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2018).

  • 60.

    Adams, D. C. & Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article  Google Scholar 

  • 61.

    Schlager, S. in Statistical Shape and Deformation Analysis (eds Zheng, G., Li, S. & Szekely, G.) 217–256 (Academic Press, 2017).

  • 62.

    Ronco, F., Roesti, M. & Salzburger, W. A functional trade-off between trophic adaptation and parental care predicts sexual dimorphism in cichlid fish. Proc. R. Soc. Lond. B 286, 20191050 (2019).

    Google Scholar 

  • 63.

    Orme, D. The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).

  • 64.

    Seehausen, O., Mayhew, P. J. & Van Alphen, J. J. M. Evolution of colour patterns in East African cichlid fish. J. Evol. Biol. 12, 514–534 (1999).

    Article  Google Scholar 

  • 65.

    Landgraf, A. J. & Lee, Y. Dimensionality reduction for binary data through the projection of natural parameters. J. Multivar. Anal. 104668 (2020).

  • 66.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  • 67.

    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).

    Google Scholar 

  • 69.

    Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695–715 (2001).

    Article  Google Scholar 

  • 70.

    Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods 12, 966–968 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite–fast D-statistics and related admixture evidence from VCF files. Methods Ecol. Evol. https://doi.org/10.1111/1755-0998.13265 (2020).

  • 78.

    Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLOS Comput. Biol. 12, e1004842 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 79.

    Malinsky, M. et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493–1498 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar