Trending

Coupling of hippocampal theta and ripples with pontogeniculooccipital waves

  • 1.

    Stickgold, R. & Walker, M. P. Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci. 28, 408–415 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Pace-Schott, E. F. & Hobson, J. A. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591–605 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K. & Buzsáki, G. REM sleep reorganizes hippocampal excitability. Neuron 75, 1001–1007 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Vertes, R. P. Brain stem generation of the hippocampal EEG. Prog. Neurobiol. 19, 159–186 (1982).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Green, J. D. & Arduini, A. A. Hippocampal electrical activity in arousal. J. Neurophysiol. 17, 533–557 (1954).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Montgomery, S. M., Sirota, A. & Buzsáki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 28, 6731–6741 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 11.

    Datta, S. Cellular basis of pontine ponto–geniculo–occipital wave generation and modulation. Cell. Mol. Neurobiol. 17, 341–365 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Jouvet, M. Recherches sur les structures nerveuses et les mecanismes responsables des differentes phases du sommeil physiologique (Research on the neural structures and responsible mechanisms in different phases of physiological sleep). Arch. Ital. Biol. 100, 125–206 (1962).

    CAS  PubMed  Google Scholar 

  • 13.

    Fernández-Mendoza, J. et al. Evidence of subthalamic PGO-like waves during REM sleep in humans: a deep brain polysomnographic study. Sleep 32, 1117–1126 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Vuillon-Cacciuttolo, G. & Seri, B. Effets de la section des nerfs optiques chez le babouin sur l’activite a type de pointes genouillees et corticales au cours des divers etats de vigilance (Effects of optic nerve section in baboons on the geniculate and cortical spike activity during various states of vigilance). Electroencephalogr. Clin. Neurophysiol. 44, 754–768 (1978).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Mavanji, V. & Datta, S. Activation of the phasic pontine-wave generator enhances improvement of learning performance: a mechanism for sleep-dependent plasticity. Eur. J. Neurosci. 17, 359–370 (2003).

    PubMed  Article  Google Scholar 

  • 16.

    Datta, S. & O’Malley, M. W. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep. J. Neurosci. 33, 4561–4569 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Mavanji, V., Ulloor, J., Saha, S. & Datta, S. Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory. Sleep 27, 1282–1292 (2004).

    PubMed  Article  Google Scholar 

  • 18.

    Hobson, J. A. REM sleep and dreaming: towards a theory of protoconsciousness. Nat. Rev. Neurosci. 10, 803–813 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812–816 (2016).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 20.

    Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    PubMed  Article  Google Scholar 

  • 21.

    Karashima, A., Nakao, M., Katayama, N. & Honda, K. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep. Brain Res. 1051, 50–56 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Jutras, M. J., Fries, P. & Buffalo, E. A. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc. Natl Acad. Sci. USA 110, 13144–13149 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 23.

    Bohbot, V. D., Copara, M. S., Gotman, J. & Ekstrom, A. D. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 8, 14415 (2017).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 24.

    Ramirez-Villegas, J. F., Logothetis, N. K. & Besserve, M. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events. Proc. Natl Acad. Sci. USA 112, E6379–E6387 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 25.

    Carr, M. F., Karlsson, M. P. & Frank, L. M. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 75, 700–713 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Calvo, J. M. & Fernández-Guardiola, A. Phasic activity of the basolateral amygdala, cingulate gyrus, and hippocampus during REM sleep in the cat. Sleep 7, 202–210 (1984).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Amzica, F. & Steriade, M. Progressive cortical synchronization of ponto–geniculo–occipital potentials during rapid eye movement sleep. Neuroscience 72, 309–314 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Bowker, R. M. Variability in the characteristics of pontogeniculooccipital spikes during paradoxical sleep. Exp. Neurol. 87, 212–224 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Datta, S., Calvo, J. M., Quattrochi, J. & Hobson, J. A. Cholinergic microstimulation of the peribrachial nucleus in the cat. I. Immediate and prolonged increases in ponto–geniculo–occipital waves. Arch. Ital. Biol. 130, 263–284 (1992).

    CAS  PubMed  Google Scholar 

  • 30.

    Morrison, A. R. & Pompeiano, O. Vestibular influences during sleep. IV. Functional relations between vestibular nuclei and lateral geniculate nucleus during desynchronized sleep. Arch. Ital. Biol. 104, 425–458 (1966).

    CAS  PubMed  Google Scholar 

  • 31.

    Datta, S. Activation of phasic pontine-wave generator: a mechanism for sleep-dependent memory processing. Sleep Biol. Rhythms 4, 16–26 (2006).

    Article  Google Scholar 

  • 32.

    Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 33.

    Shajarisales, N., Janzing, D., Schoelkopf, B. & Besserve, M. Telling cause from effect in deterministic linear dynamical systems. In Proc. 32nd International Conference on Machine Learning Vol. 37 (eds F. Bach & D. Blei) 285–294 (Proceedings of Machine Learning Research, 2015).

  • 34.

    Hsieh, K.-C., Robinson, E. L. & Fuller, C. A. Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-hour light-dark cycles. Sleep 31, 1239–1250 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Fernández-Ruiz, A. et al. Long-duration hippocampal sharp wave ripples improve memory. Science 364, 1082–1086 (2019).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 36.

    Griffin, A. L., Asaka, Y., Darling, R. D. & Berry, S. D. Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning. Behav. Neurosci. 118, 403–411 (2004).

    PubMed  Article  Google Scholar 

  • 37.

    Huerta, P. T. & Lisman, J. E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Poe, G. R., Nitz, D. A., McNaughton, B. L. & Barnes, C. A. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res. 855, 176–180 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Datta, S., Siwek, D. F., Patterson, E. H. & Cipolloni, P. B. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 30, 409–423 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Steriade, M., Datta, S., Paré, D., Oakson, G. & Curró Dossi, R. C. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Moriizumi, T., Nakamura, Y., Tokuno, H., Kudo, M. & Kitao, Y. Synaptic organization of the pedunculopontine tegmental nucleus of the cat. Brain Res. 478, 315–325 (1989).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Datta, S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 11, 431–440 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Soltani, S. et al. Sleep–wake cycle in young and older mice. Front. Syst. Neurosci. 13, 51 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Ulloor, J. & Datta, S. Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J. Neurochem. 95, 418–428 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Paxinos, G., Petrides, M., Huang, X. F. & Toga, A. W. The Rhesus Monkey Brain in Stereotaxic Coordinates (Elsevier Science, 2008).

  • 46.

    Ramirez-Villegas, J. F., Willeke, K. F., Logothetis, N. K. & Besserve, M. Dissecting the synapse- and frequency-dependent network mechanisms of in vivo hippocampal sharp wave-ripples. Neuron 100, 1224–1240 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Leonard, T. K., Mikkila, J. M., Eskandar, E. N., Gerrard, J. L., Kaping, D., Patel, S. R., Womelsdorf, T., & Hoffman, K. L. Sharp wave ripples during visual exploration in the primate hippocampus. J. Neurosci. 35, 14771–14782 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Leppä, M. et al. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage 31, 661–669 (2006).

    PubMed  Article  Google Scholar 

  • 49.

    Talbot, J. D. et al. Multiple representations of pain in human cerebral cortex. Science 251, 1355–1358 (1991).

    CAS  Article  ADS  Google Scholar 

  • 50.

    Jones, A. K. et al. In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci. Lett. 126, 25–28 (1991).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Grønlykke, L. et al. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery. Acta Neurol. Scand. 117, 90–93 (2008).

    PubMed  Google Scholar 

  • 52.

    Iannetti, G. D. et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl Acad. Sci. USA 102, 18195–18200 (2005).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 53.

    Wise, R. G. et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16, 999–1014 (2002).

    PubMed  Article  Google Scholar 

  • 54.

    Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18, 631–640 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 56.

    Mortazavi, S., Thompson, J., Baghdoyan, H. A. & Lydic, R. Fentanyl and morphine, but not remifentanil, inhibit acetylcholine release in pontine regions modulating arousal. Anesthesiology 90, 1070–1077 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Lozito, R. J., La Marca, S., Dunn, R. W. & Jerussi, T. P. Single versus multiple infusions of fentanyl analogues in a rat EEG model. Life Sciences 55, 1337–1342 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Egan, T. D., Minto, C. F., Hermann, D. J., Barr, J., Muir, K. T. & Shafer, S. L. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 84, 821–833 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Bonafide, C. P., Aucutt-Walter, N., Divittore, N., King, T., Bixler, E. O. & Cronin, A. J. Remifentanil inhibits rapid eye movement sleep but not the nocturnal melatonin surge in humans. Anesthesiology 108, 627–633 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B. & Panzeri, S. Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated information transfer. PLoS Biol. 13, e1002257 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Brillinger, D. R. Estimation of 2nd-order intensities of a bivariate stationary point process. J. R. Stat. Soc. B 38, 60–66 (1976).

    MATH  Google Scholar 

  • 62.

    Saleem, K. S. & Logothetis, N. K. A Combined MRI and Histology Atlas of the Rhesus Monkey Brain (Academic, 2006).

  • 63.

    Blair, R. C., & Karniski, W. An alternative method for significance testing of waveform difference potentials. Psychophysiology 30, 518–524 (1993).

    CAS  PubMed  Article  Google Scholar 

  • Leave a Reply