Trending

Correlated insulating states at fractional fillings of moiré superlattices

  • 1.

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  CAS  Google Scholar 

  • 2.

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Hotta, C. Theories on frustrated electrons in two-dimensional organic solids. Crystals 2, 1155–1200 (2012).

    CAS  Google Scholar 

  • 4.

    Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  • 5.

    Zhu, Q., Tu, M. W. Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Wu, F., Lovorn, T., Tutuc, E. & Macdonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Wu, F., Lovorn, T., Tutuc, E., Martin, I. & Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS  PubMed  Google Scholar 

  • 12.

    Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. https://doi.org/10.1038/s41567-020-0958-x (2020).

  • 13.

    Pietig, R., Bulla, R. & Blawid, S. Reentrant charge order transition in the extended Hubbard model. Phys. Rev. Lett. 82, 4046–4049 (1999).

    ADS  CAS  Google Scholar 

  • 14.

    Tocchio, L. F., Gros, C., Zhang, X. F. & Eggert, S. Phase diagram of the triangular extended Hubbard model. Phys. Rev. Lett. 113, 246405 (2014).

    ADS  PubMed  Google Scholar 

  • 15.

    McKenzie, R. H., Merino, J., Marston, J. B. & Sushkov, O. P. Charge ordering and antiferromagnetic exchange in layered molecular crystals of the θ type. Phys. Rev. B 64, 085109 (2001).

    ADS  Google Scholar 

  • 16.

    Porras, D. & Cirac, J. I. Quantum manipulation of trapped ions in two dimensional coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS  Google Scholar 

  • 24.

    Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    CAS  PubMed  Google Scholar 

  • 25.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); correction 581, E3 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18, 6175–6180 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Wang, G. et al. Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  • 28.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS  Google Scholar 

  • 30.

    Gao, S., Liang, Y., Spataru, C. D. & Yang, L. Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett. 16, 5568–5573 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019); correction 569, E7 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019); correction 572, E8 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Preprint at https://arxiv.org/abs/1910.14061 (2019).

  • 36.

    Slagle, K. & Fu, L. Charge transfer excitations, pair density waves, and superconductivity in moiré materials. Preprint at https://arxiv.org/abs/2003.13690 (2020).

  • 37.

    Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Nandkishore, R., Chern, G. W. & Chubukov, A. V. Itinerant half-metal spin-density-wave state on the hexagonal lattice. Phys. Rev. Lett. 108, 227204 (2012).

    ADS  PubMed  Google Scholar 

  • 39.

    Nandkishore, R., Thomale, R. & Chubukov, A. V. Superconductivity from weak repulsion in hexagonal lattice systems. Phys. Rev. B 89, 144501 (2014).

    ADS  Google Scholar 

  • 40.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    ADS  PubMed  Google Scholar 

  • 42.

    Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    ADS  PubMed  Google Scholar 

  • 44.

    Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    ADS  Google Scholar 

  • 45.

    Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    ADS  PubMed  Google Scholar 

  • Leave a Reply