Trending

Assembly of synaptic active zones requires phase separation of scaffold molecules

  • 1.

    Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Ghelani, T. & Sigrist, S. J. Coupling the structural and functional assembly of synaptic release sites. Front. Neuroanat. 12, 81 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Lipton, D. M., Maeder, C. I. & Shen, K. Rapid assembly of presynaptic materials behind the growth cone in dopaminergic neurons is mediated by precise regulation of axonal transport. Cell Rep. 24, 2709–2722 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Sala, K. et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. Sci. Rep. 9, 13530 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Patel, M. R. et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat. Neurosci. 9, 1488–1498 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Dai, Y. et al. SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nat. Neurosci. 9, 1479–1487 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Patel, M. R. & Shen, K. RSY-1 is a local inhibitor of presynaptic assembly in C. elegans. Science 323, 1500–1503 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Putnam, A., Cassani, M., Smith, J. & Seydoux, G. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26, 220–226 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Kalla, S. et al. Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J. Neurosci. 26, 13054–13066 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Tsuriel, S. et al. Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J. Neurosci. 29, 351–358 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Deken, S. L. et al. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J. Neurosci. 25, 5975–5983 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Kittelmann, M. et al. Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans. J. Cell Biol. 203, 849–863 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Schwartz, M. L. & Jorgensen, E. M. SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans. Genetics 202, 1277–1288 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Wu, Y. E., Huo, L., Maeder, C. I., Feng, W. & Shen, K. The balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses. Neuron 78, 994–1011 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Chia, P. H., Patel, M. R. & Shen, K. NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat. Neurosci. 15, 234–242 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Collins, K. M. et al. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. eLife 5, e21126 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479.e7 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Yamasaki, A. et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163–1175.e9 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Vernon, R. M. et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem. Sci. 43, 81–94 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Wu, X. et al. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell 73, 971–984.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Dickinson, D. J., Pani, A. M., Heppert, J. K., Higgins, C. D. & Goldstein, B. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200, 1035–1049 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Hubbard, E. J. A. FLP/FRT and Cre/lox recombination technology in C. elegans. Methods 68, 417–424 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Kato, M., Lin, Y. & McKnight, S. L. Cross-β polymerization and hydrogel formation by low-complexity sequence proteins. Methods 126, 3–11 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Walther, P. & Ziegler, A. Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J. Microsc. 208, 3–10 (2002).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 35.

    Buser, C. & Walther, P. Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around −60 °C. J. Microsc. 230, 268–277 (2008).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 36.

    Sato, T. A modified method for lead staining of thin sections. J. Electron Microsc. (Tokyo) 17, 158–159 (1968).

    CAS  Google Scholar 

  • 37.

    Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46 (W1), W329–W337 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Hanson, J., Paliwal, K. & Zhou, Y. Accurate single-sequence prediction of protein intrinsic disorder by an ensemble of deep recurrent and convolutional architectures. J. Chem. Inf. Model. 58, 2369–2376 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Bolognesi, B. et al. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 16, 222–231 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Britton, S. et al. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res. 42, 9047–9062 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    McDonnell, A. V., Jiang, T., Keating, A. E. & Berger, B. Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22, 356–358 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Shen, K. & Bargmann, C. I. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112, 619–630 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Schafer, W. F. Genetics of egg-laying in worms. Annu. Rev. Genet. 40, 487–509 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Leave a Reply