A yeast living ancestor reveals the origin of genomic introgressions

  • 1.

    Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Arnold, B. J. et al. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl Acad. Sci. USA 113, 8320–8325 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Sun, Y. et al. Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. PLoS Genet. 8, e1002820 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Greig, D. Reproductive isolation in Saccharomyces. Heredity 102, 39–44 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Wolf, A. B. & Akey, J. M. Outstanding questions in the study of archaic hominin admixture. PLoS Genet. 14, e1007349–e14 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered. 105 (Suppl. 1), 795–809 (2014).

    PubMed  Article  Google Scholar 

  • 8.

    Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    PubMed  Article  Google Scholar 

  • 9.

    Martin, S. H. & Jiggins, C. D. Interpreting the genomic landscape of introgression. Curr. Opin. Genet. Dev. 47, 69–74 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Morales, L. & Dujon, B. Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol. Mol. Biol. Rev. 76, 721–739 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Marsit, S. et al. Evolutionary biology through the lens of budding yeast comparative genomics. Nat. Rev. Genet. 18, 581–598 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Hunter, N., Chambers, S. R., Louis, E. J. & Borts, R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15, 1726–1733 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Kao, K. C., Schwartz, K. & Sherlock, G. A genome-wide analysis reveals no nuclear dobzhansky-muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities. PLoS Genet. 6, e1001038 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Greig, D., Louis, E. J., Borts, R. H. & Travisano, M. Hybrid speciation in experimental populations of yeast. Science 298, 1773–1775 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Liti, G., Barton, D. B. H. & Louis, E. J. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174, 839–850 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Almeida, P. et al. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat. Commun. 5, 4044 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Barbosa, R. et al. Evidence of natural hybridization in Brazilian wild lineages of Saccharomyces cerevisiae. Genome Biol. Evol. 8, 317–329 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Gallone, B. et al. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat. Ecol. Evol. 3, 1562–1575 (2019).

    PubMed  Article  Google Scholar 

  • 20.

    Langdon, Q. K. et al. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat. Ecol. Evol. 3, 1576–1586 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Lee, H.-Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135, 1065–1073 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Pontes, A., Čadež, N., Gonçalves, P. & Sampaio, J. P. A quasi-domesticate relic hybrid population of Saccharomyces cerevisiae × S. paradoxus adapted to olive brine. Front. Genet. 10, 449 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Bergström, A. et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol. Biol. Evol. 31, 872–888 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Yue, J.-X. et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 49, 913–924 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Symington, L. S., Rothstein, R. & Lisby, M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198, 795–835 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Dutta, A. et al. Genome dynamics of hybrid Saccharomyces cerevisiae during vegetative and meiotic divisions. G3 (Bethesda) 7, 3669–3679 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Tattini, L. et al. Accurate tracking of the mutational landscape of diploid hybrid genomes. Mol. Biol. Evol. 36, 2861–2877 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Smukowski Heil, C. S. et al. Loss of heterozygosity drives adaptation in hybrid yeast. Mol. Biol. Evol. 34, 1596–1612 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Bozdag, G. O. et al. Engineering recombination between diverged yeast species reveals genetic incompatibilities. Preprint at https://doi.org/10.1101/755165 (2019).

  • 31.

    Hou, J., Friedrich, A., de Montigny, J. & Schacherer, J. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr. Biol. 24, 1153–1159 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Rogers, D. W., McConnell, E., Ono, J. & Greig, D. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast. PLoS Biol. 16, e2005066 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Laureau, R. et al. Extensive recombination of a yeast diploid hybrid through meiotic reversion. PLoS Genet. 12, e1005781 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    McClure, A. W., Jacobs, K. C., Zyla, T. R. & Lew, D. J. Mating in wild yeast: delayed interest in sex after spore germination. Mol. Biol. Cell 29, 3119–3127 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. Camb. Philos. Soc. 87, 885–899 (2012).

    PubMed  Article  Google Scholar 

  • 36.

    Greig, D., Borts, R. H., Louis, E. J. & Travisano, M. Epistasis and hybrid sterility in Saccharomyces. Proc. Biol. Sci. 269, 1167–1171 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Charron, G., Marsit, S., Hénault, M., Martin, H. & Landry, C. R. Spontaneous whole-genome duplication restores fertility in interspecific hybrids. Nat. Commun. 10, 4126–10 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Tsai, I. J., Bensasson, D., Burt, A. & Koufopanou, V. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc. Natl Acad. Sci. USA 105, 4957–4962 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 1987–1992 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Enard, D. & Petrov, D. A. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell 175, 360–371.e13 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 43.

    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Liti, G., Warringer, J. & Blomberg, A. Isolation and laboratory domestication of natural yeast strains. Cold Spring Harb. Protoc. 2017, pdb.prot089052–6 (2017).

    PubMed  Article  Google Scholar 

  • 45.

    Haber, J. E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33–64 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Vázquez-García, I. et al. Clonal heterogeneity influences the fate of new adaptive mutations. Cell Rep. 21, 732–744 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    De Chiara, M. et al. Domestication reprogrammed the budding yeast life cycle. Preprint at https://doi.org/10.1101/2020.02.08.939314 (2020).

  • 48.

    Beltran, G., Novo, M., Rozès, N., Mas, A. & Guillamón, J. M. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 4, 625–632 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Zackrisson, M. et al. Scan-o-matic: high-resolution microbial phenomics at a massive scale. G3 (Bethesda) 6, 3003–3014 (2016).

    CAS  Article  Google Scholar 

  • 50.

    Barré, B. et al. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res. 30, 697–710 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Yue, J.-X. & Liti, G. Long-read sequencing data analysis for yeasts. Nat. Protocols 13, 1213–1231 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  Article  Google Scholar 

  • 55.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Lechner, M. et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 59.

    Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, 66–71 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Rolland, T. & Dujon, B. Yeasty clocks: dating genomic changes in yeasts. C. R. Biol. 334, 620–628 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Bradley, R. K. et al. Fast statistical alignment. PLOS Comput. Biol. 5, e1000392 (2009).

    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545.e20 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Ruderfer, D. M., Pratt, S. C., Seidel, H. S. & Kruglyak, L. Population genomic analysis of outcrossing and recombination in yeast. Nat. Genet. 38, 1077–1081 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause natural variation in yeast. Science 323, 498–501 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Roncoroni, M. et al. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 28, 926–935 (2011).

    CAS  PubMed  Article  Google Scholar