A blue ring nebula from a stellar merger several thousand years ago

41586 2020 2893 Fig1 HTML
  • 1.

    Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Temmink, K. D., Toonen, S., Zapartas, E., Justham, S. & Gänsicke, B. T. Looks can be deceiving. Underestimating the age of single white dwarfs due to binary mergers. Astron. Astrophys. 636, A31 (2020).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Schneider, F. R. N. et al. Stellar mergers as the origin of magnetic massive stars. Nature 574, 211–214 (2019).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Davies, M. B., Piotto, G. & de Angeli, F. Blue straggler production in globular clusters. Mon. Not. R. Astron. Soc. 349, 129–134 (2004).

    ADS  Article  Google Scholar 

  • 5.

    Leiner, E., Mathieu, R. D., Vanderburg, A., Gosnell, N. M. & Smith, J. C. Blue lurkers: hidden blue stragglers on the M67 main sequence identified from their Kepler/K2 rotation periods. Astrophys. J. 881, 47 (2019).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Wang, L., Kroupa, P., Takahashi, K. & Jerabkova, T. The possible role of stellar mergers for the formation of multiple stellar populations in globular clusters. Mon. Not. R. Astron. Soc. 491, 440–454 (2020).

    ADS  Article  Google Scholar 

  • 7.

    Belczynski, K. et al. The origin of the first neutron star–neutron star merger. Astron. Astrophys. 615, A91 (2018).

    Article  Google Scholar 

  • 8.

    Bond, H. E. et al. An energetic stellar outburst accompanied by circumstellar light echoes. Nature 422, 405–408 (2003).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Kulkarni, S. R. et al. An unusually brilliant transient in the galaxy M85. Nature 447, 458–460 (2007).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Tylenda, R. & Kamiński, T. Evolution of the stellar-merger red nova V1309 Scorpii: spectral energy distribution analysis. Astron. Astrophys. 592, A134 (2016).

    ADS  Article  Google Scholar 

    READ  10 Healthy Drinks You're Not Drinking—Yet!
  • 11.

    Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    ADS  Article  Google Scholar 

  • 12.

    Adams, F. C., Lada, C. J. & Shu, F. H. Spectral evolution of young stellar objects. Astrophys. J. 312, 788–806 (1987).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Figueira, P., Santos, N. C., Pepe, F., Lovis, C. & Nardetto, N. Line-profile variations in radial-velocity measurements. Two alternative indicators for planetary searches. Astron. Astrophys. 557, A93 (2013).

    ADS  Article  Google Scholar 

  • 14.

    Lima, G. H. R. A., Alencar, S. H. P., Calvet, N., Hartmann, L. & Muzerolle, J. Modeling the Hα line emission around classical T Tauri stars using magnetospheric accretion and disk wind models. Astron. Astrophys. 522, A104 (2010).

    ADS  Article  Google Scholar 

  • 15.

    Martin, D. C. et al. The galaxy evolution explorer: a space ultraviolet survey mission. Astrophys. J. Lett. 619, L1–L6 (2005).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Martin, D. C. et al. A turbulent wake as a tracer of 30,000 years of Mira’s mass loss history. Nature 448, 780–783 (2007).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Gaia Collaboration. VizieR Online Data Catalog: Gaia DR2, I/345 https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=I/345 (2018).

  • 18.

    Ness, M. et al. ARGOS – III. Stellar populations in the Galactic bulge of the Milky Way. Mon. Not. R. Astron. Soc. 430, 836–857 (2013).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Edwards, S. et al. Forbidden line and H alpha profiles in T Tauri star spectra: a probe of anisotropic mass outflows and circumstellar disks. Astrophys. J. 321, 473–495 (1987).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Sahai, R., Findeisen, K., Gil de Paz, A. & Sánchez Contreras, C. Binarity in cool asymptotic giant branch stars: a GALEX search for ultraviolet excesses. Astrophys. J. 689, 1274–1278 (2008).

    ADS  Article  Google Scholar 

    READ  The Division of Tradition and Tourism
  • 21.

    Fukui, Y. et al. Molecular outflows in protostellar evolution. Nature 342, 161–163 (1989).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Kamath, D., Wood, P. R., Van Winckel, H. & Nie, J. D. A newly discovered stellar type: dusty post-red giant branch stars in the Magellanic Clouds. Astron. Astrophys. 586, L5 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Bujarrabal, V. et al. High-resolution observations of IRAS 08544–4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind. Astron. Astrophys. 614, A58 (2018).

    Article  Google Scholar 

  • 24.

    Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Metzger, B. D., Shen, K. J. & Stone, N. Secular dimming of KIC 8462852 following its consumption of a planet. Mon. Not. R. Astron. Soc. 468, 4399–4407 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    ADS  Article  Google Scholar 

  • 27.

    Johnson, J. A. et al. Retired A stars and their companions: exoplanets orbiting three intermediate-mass subgiants. Astrophys. J. 665, 785–793 (2007).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Pejcha, O., Metzger, B. D. & Tomida, K. Cool and luminous transients from mass-losing binary stars. Mon. Not. R. Astron. Soc. 455, 4351–4372 (2016).

    ADS  CAS  Article  Google Scholar 

  • 29.

    MacLeod, M., Ostriker, E. C. & Stone, J. M. Bound outflows, unbound ejecta, and the shaping of bipolar remnants during stellar coalescence. Astrophys. J. 868, 136 (2018).

    ADS  CAS  Article  Google Scholar 

  • 30.

    de Medeiros, J. R., Da Rocha, C. & Mayor, M. The distribution of rotational velocity for evolved stars. Astron. Astrophys. 314, 499–502 (1996).

    ADS  Google Scholar 

  • 31.

    Kamiński, T. et al. Submillimeter-wave emission of three Galactic red novae: cool molecular outflows produced by stellar mergers. Astron. Astrophys. 617, A129 (2018).

    READ  Stay-at-home order issued for San Francisco Bay Area, ahead of state mandate - CNBC

    Article  Google Scholar 

  • 32.

    Pejcha, O., Metzger, B. D., Tyles, J. G. & Tomida, K. Pre-explosion spiral mass loss of a binary star merger. Astrophys. J. 850, 59 (2017).

    ADS  Article  Google Scholar 

  • 33.

    Martínez-González, S. et al. Supernovae within pre-existing wind-blown bubbles: dust injection versus ambient dust destruction. Astrophys. J. 887, 198 (2019).

    ADS  Article  Google Scholar 

  • 34.

    Kamiński, T. et al. Organic molecules, ions, and rare isotopologues in the remnant of the stellar-merger candidate, CK Vulpeculae (Nova 1670). Astron. Astrophys. 607, A78 (2017).

    Article  Google Scholar 

  • 35.

    Schleicher, D. R. G. & Dreizler, S. Planet formation from the ejecta of common envelopes. Astron. Astrophys. 563, A61 (2014).

    ADS  Article  Google Scholar 

  • 36.

    Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) A20 (IAU, 2003).

  • 37.

    Bradley, L. et al. photutils: photometry tools (2016).

  • 38.

    The Astropy Collaboration. The astropy project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    ADS  Article  Google Scholar 

  • 39.

    Afşar, M. et al. A Spectroscopic survey of field red horizontal-branch stars. Astron. J. 155, 240 (2018).

    ADS  Article  Google Scholar 

  • Leave a Reply